Researchers and Clinicians united

to restore vision.

Group Botond Roska

Visual circuits: structure, function, and repair

Vision is a key sense for humans, and dysfunction of the visual system leads to visual handicap or blindness. My laboratory aims to find ways to repair visual dysfunction by investigating the function of the retina, thalamus, and cortex at the level of cell types and circuits, and using the acquired knowledge to understand disease mechanisms and to develop treatments.

Our experimental approach is inter-disciplinary: We combine physiological, molecular, viral, and computational approaches to reveal the structure and function of visual circuits. We use molecular techniques to genetically identify cell types in the network and label them using transgenic or viral technologies. The connections between labeled cells are revealed using trans-synaptic viruses. We then study the function of a genetically isolated circuit with physiological and imaging tools. Finally, we use computational methods to predict the behavior of an isolated circuit under natural conditions.

We combine the insights from our basic circuit investigations with human genetics to understand disease mechanisms and we use viral vectors to develop cell-type-targeted gene therapy to treat visual dysfunction. Currently we are focusing on cell-type-targeted optogenetic therapy.

Group Members

Group Leader: Botond Roska

 

Postdoctoral fellows

Arjun Bharioke
Tamas Dalmay
Alex Fratzl
Alvaro Herrero Navarro
Atsuki Hiramoto
Mohammad Khani
Katja Kolar
Georg Kosche
Akos Kusnyerik
Veronica Moreno-Juan
Rei Morikawa-Kanamori
Fiona Muellner
Martin Munz
Dasha Nelidova
Helene Schreyer

PhD students

Temurkhan Ayupov
Miklos Boldogkoi
Gasser Elmissiery
Alissa Muller
Tiago Rodrigues
Stefan Spirig 
Hannah Stabb

 Technical/Research associates

Serena Curtoni
Ilaria Gregorio
Nicole Ledergerber
Dimitri Rey
Giuseppe Vaccaro

 Ophthalmology resident researcher

Stefan Futterknecht

Selected Journal Articles

Partial recovery of visual function in a blind patient after optogenetic therapy

Sahel JA, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, Martel JN, Degli Esposti S, Delaux A, de Saint Aubert JB, de Montleau C, Gutman E, Audo I, Duebel J, Picaud S, Dalkara D, Blouin L, Taiel M, Roska B.

Nature Medicine. 2021

Cell Types of the Human Retina and its Organoids at Single-Cell Resolution

Cameron S. Cowan, Magdalena Renner, Martina De Gennaro, Brigitte Gross-Scherf, David Goldblum, Yanyan Hou, Martin Munz, Tiago M. Rodrigues, Jacek Krol, Tamas Szikra, Rachel Cuttat, Annick Waldt, Panagiotis Papasaikas, Roland Diggelmann, Claudia P. Patino-Alvarez, Patricia Galliker, Stefan E. Spirig, Dinko Pavlinic, Nadine Gerber-Hollbach, Sven Schuierer, Aldin Srdanovic, Marton Balogh, Riccardo Panero, Akos Kusnyerik, Arnold Szabo, Michael B. Stadler, Selim Orgül, Simone Picelli, Pascal W. Hasler, Andreas Hierlemann, Hendrik P.N. Scholl, Guglielmo Roma, Florian Nigsch, Botond Roska

Cell. 2020

Restoring light sensitivity using tunable near-infrared sensors

Dasha Nelidova, Rei K. Morikawa, Cameron S. Cowan, Zoltan Raics, David Goldblum, Hendrik P. N. Scholl, Tamas Szikra, Arnold Szabo, Daniel Hillier, Botond Roska

Science. 2020

Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans.

Jüttner J, Szabo A, Gross-Scherf B, Morikawa R, Rompani S, Hantz P, Szikra T, Esposti E, Cowan C, Bharioke A, Patino-Alvarez C, Keles Ö, Kusnyerik A, Azoulay T, Hartl D, Krebs A, Schübeler D, Hajdu R, Lukats A, Nemeth J, Nagy Z, Wu KC, Wu RH, Xiang L, Fang XL, Jin ZB, Goldblum D, Hasler P, Scholl H, Krol J, Roska B

Nat Neurosci. 2019

Whole-Brain Functional Ultrasound Imaging Reveals Brain Modules for Visuomotor Integration

Émilie Macé, Gabriel Montaldo, Stuart Trenholm, Cameron Cowan, Alexandra Brignall, Alan Urban, and Botond Roska (2018)

Neuron 100, 1241–1251

How Diverse Retinal Functions Arise from Feedback at the First Visual Synapse

Antonia Drinnenberg, Felix Franke, Rei K. Morikawa, Andreas Hierlemann, Rava Azeredo da Silveira and Botond Roska (2018)

Neuron. 2000; 27: 513-523

Restoring Vision

Roska B & Sahel JS (2018)

Nature 2018 May; 557(7705):359-367

Virus stamping for targeted single-cell infection in vitro and in vivo.

Schubert R, Trenholm S, Balint K, Kosche G, Cowan CS, Mohr MA, Munz M, Martinez-Martin D, Fläschner G, Newton R, Krol J, Scherf BG, Yonehara K, Wertz A, Ponti A, Ghanem A, Hillier D, Conzelmann KK, Müller DJ*, Roska B* (2018)

Nature Biotechnology 2018 Jan;36(1):81-88

Causal evidence for retina-dependent and -independent visual motion computations in mouse cortex.

Hillier D, Fiscella M, Drinnenberg A, Trenholm S, Rompani SB, Raics Z, Katona G, Juettner J, Hierlemann A, Rozsa B, Roska B (2017)

Nature Neuroscience 2017 Jul;20(7):960-968

Different Modes of Visual Integration in the Lateral Geniculate Nucleus Revealed by Single-Cell-Initiated Transsynaptic Tracing.

Rompani SB, Müllner FE, Wanner A, Zhang C, Roth CN, Yonehara K, Roska B. (2017)

Neuron. 2017 Feb 22;93(4):767-776

Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity.

Yonehara K, Fiscella M, Drinnenberg A, Esposti F, Trenholm S, Krol J, Franke F, Scherf BG, Kusnyerik A, Müller J, Szabo A, Jüttner J, Cordoba F, Reddy AP, Németh J, Nagy ZZ, Munier F, Hierlemann A, Roska B (2016)

Neuron. 2016 Jan 6;89(1):177-93

Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules.

Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rozsa B, Conzelmann KK, Roska B. (2015)

Science. 3;349(6243):70-4

Transcriptional code and disease map for adult retinal cell types.

Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S, Le YZ, Fehling HJ, Gaidatzis D, Stadler MB, Roska B (2012)

Nat Neurosci. 15(3):487-95

Spatially asymmetric reorganization of inhibition establishes a motion sensitive circuit.

Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, Roska B (2010)

Nature 469:407-10

Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa.

Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Forster V, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010)

Science 329:413-7

Characterization of microRNAs induced by light adaptation in mouse retina reveals rapid turnover as a common property of neuronal microRNAs.

Krol J, Busskamp V, Markiewicz I, Stadler MB, Ribi S, Duebel J, Oertner TO, Schübeler D, Schratt G, Fehling HJ, Richter J, Bibel M, Roska B*, Filipowicz W* (2010) *shared corresponding authors

Cell 141:618-31

Genetic address book for retinal cell types.

Siegert S, Gross Scherf B, Del Punta K, Didkovsky N, Heintz N, Roska B (2009)

Nature Neurosci 12:1197-1204

Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.

Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008)

Nature Neurosci 11:667-675

You are using an outdated browser. Please upgrade your browser to improve your experience and security.